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ABSTRACT 

It has been conjectured by C. van Nuffelen that the chromatic number of 
any graph with at  least one edge does not exceed the rank of its adja- 
cency matrix. We give a counterexample, with chromatic number 32 and 
with an adjacency matrix of rank 29. 

All graphs in this note are finite and without loops or multiple edges. Let 
G = (V,E)  be a graph. A subset X C V is stable if no edge of G has both ends 
in X. The chromatic number x(G)  of G is the minimum k 2 0 such that V may 
be partitioned into k stable sets. The adjacency matrix of G is the matrix 
M ( G )  = (muu)u,uEV defined by muu = I if u # u and u , u  are adjacent, and 
mu” = 0 otherwise. Let rk(M(G)) denote the rank of M(G) over the real field. 

It was conjectured by van Nuffelen in [4] in 1976, and later, independently, 
in [Fa] (by a computer program called Graffiti for generating conjectures in 
graph theory) that x ( G )  5 rk(M(G)) for every graph G with at least one edge. 
This conjecture has recently attracted a considerable amount of interest, partly 
because it is related to an important open question in communication complex- 
ity [ 3 ] .  Unfortunately, the conjecture is false; we shall give a counterexample 
with x(G)  = 32 and rk(M(G)) = 29 .  

Let H be a hypergraph, that is, a set V ( H )  together with a set E ( H )  of sub- 
sets of V ( H ) .  Assuming 0 € E ( H ) ,  we construct a graph G ( H )  from H as 
follows. Let W be the set of all functions from V ( H )  into G F ( 2 ) .  For each 
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A E E ( H ) ,  its characteristicfunction is the function mapping u E V ( H )  to 1 if 
and only if u E A.  Let L be the set of all characteristic functions of members of 
E ( H ) ;  then 0 E L .  Put K = W - L .  We define G ( H )  to be the graph with ver- 
tex set W in which u , u  E W are adjacent if u @ u E K. (We use @ to denote 
addition of vectors over (GF(2).) Thus G ( H )  is simply the Cayley graph of the 
group (GF(2))'"'"'' with respect to the set K ,  described here in detail for com- 
pleteness. For two vectors u , u  E W ,  let u . u E GF(2)  denote their scalar 
product (over GF(2)). 

Claim 1. 
numbers C,,, (- l)k.w (w E W ) .  

The eigenvalues of M ( G ( H ) )  (with correct multiplicities) are the 

Proof. This is a special case of a standard result about the eigenvalues of 
Cayley graphs of Abelian groups (see, for example, [ 2 ] )  but we give a proof for 
the reader's convenience. For each w E W. let 

A, = C (-1)"'" 
kEK 

and let x, be the w-tuple whose uth term (for u E W )  is (- 1)'"". We claim that 
x, is an eigenvector of M ( G ( H ) )  with eigenvalue A,. To see this, we observe 
that for each u E W, the uth term of M ( G ( H ) ) x ,  is 

Z"(-1)"'": u E w,u @ u E K ]  

and so M ( G ( H ) ) x ,  = h,x,. Moreover, for distinct w, w' E W, 

since w @ w' # 0. Thus the x,'s form an orthogonal basis of eigenvectors, 
and the result follows. I 

Claim 2. 
number of subsets X 
members A E E ( H ) .  

If K # 0, the multiplicity of 0 as an eigenvalue of M ( G ( H ) )  is the 
V ( H )  such that IX n A1 is odd for precisely iIE(H)I 

Proof. For each w E W define A, as before. If w = 0 then A, # 0 since 
K # 0. If w # 0, then k . w is odd for precisely half of all k E W ;  and 
A, = 0 if and only if k - w is odd for precisely half of all k E K. We deduce 
that A, = 0 if and only if k . w is odd for precisely half of all k E L .  The claim 
follows from Claim 1. I 
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Now let H be the hypergraph with V ( H )  = { 1,2, . . . ,6} and 

The number of X C V ( H )  such that IX f l  A1 is odd for precisely four members 
A E E ( H )  is 35 (namely, all 3-subsets and 4-subsets of { 1, . . . ,6}). By 
Claim 2 M ( G ( H ) )  has rank 29, since G ( H )  has 64 vertices. Moreover, if 
w I ,  w2, w3 E W form a stable set of size 3, then wI  @ w2, w2 @ wj, w3 0 w, E 
L ,  which is impossible since the sum of any three nonzero members of L is 
nonzero. We deduce that every stable set of G ( H )  has cardinality 1 2 ,  and so 
x ( G )  2 ilV(G)l = 32. (Note that, in fact, x ( G )  = 32 as the complement of G 
contains a perfect matching). 

It is easy and well known that for any graph G ,  x ( G )  I 2"G'M'G" (and in fact 
this inequality holds even when we let rk(M(G)) denote the rank of M ( G )  over 
an arbitrary field). It remains open to decide if in general x(G)  is bounded by a 
polynomial in rk(M(G))-such a result would be of interest for [3]. Although 
one can easily produce from our example (by taking i disjoint copies of it and 
joining every vertex of each copy to every vertex of every other copy) a family 
of graphs {G,},,, with x(G, )  = 32i and rk(M(G,)) = 29i, we cannot even show 
that x ( G )  is not bounded by a linear function of rk(M(G)) .  
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